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Sankhy? : The Indian Journal of Statistics 

1980, Volume 42, Series A, Pts. 1 & 2, pp. 19-52. 

ASYMPTOTIC THEORY FOR SOME FAMILIES OF 

TWO-SAMPLE NONPARAMETRIC STATISTICS 

By LARS HOLST* 

University of Wisconsin, Madison and Uppsala University, Sweden 

and 

J. S. RAO 

University of California, Santa Barbara, USA 

SUMMARY. Let Xl9 ... , Xm-i and Ylt ... , Yn be independent random samples from 

two continuous distribution functions F and O respectively on the real line. We wish to test 

the null hypothesis that these two parent populations are identical. LetX' < ... ^ X'~ be 

the ordered X-observations. Denote by Sjt the number of Y-observations falling in the interval 

[X'v X'.), k = 1,... , m. This paper studies the asymptotic distribution theory and limiting 

efficiencies of families of test statistics for the null hypothesis, based on these numbers {Sjt}. Let 

h( . ) and {h*( 
. ) k = 1,. .. , m} be real-valued functions satisfying some simple regularity condi 

tions. Asymptotic theory under the null hypothesis as well as under a suitable sequence of alter 

m 

natives, is studied for test statistics of the form 2 h(Sk), based symmetrically on $*'? and those 
fc-1 

m 
of the form 2 hjc(Sjc) which are not symmetric in {Sjc}. It is shown here that tests of the symme 

fc-1 

trie type have poor asymptotic performance in the sense that they can only distinguish alter 

natives at a "distance" of n"1^ from the hypothesis. Among this class of symmetric tests, which 

includes for instance the well known run test and the Dixon test, it is shown that the Dixon 

test has the maximum asymptotic relative efficiency. On the other hand, tests of the nonsym 

metric type can distinguish alternatives converging at the more standard rate of n'112. 

Wilcoxon-Mann-Whitney test is an example which belongs to this class. After investigating the 

asymptotic theory under such alternatives, methods are suggested which allow one to select 

m 
an "optimal" test against any specific alternative, from among tests of the type 2 hj?(Sjc). 

*-=l 

Connections with rank tests are briefly explored and some illustrative examples provided. 

1. Introduction and notations 

Let Xl9 ...,!,?_! and Yl9 ..., Yn be independent random samples from 

two populations with continuous distribution functions (d.f.s.) F(x) and G(y) 

respectively. We wish to test if these two populations are identical, i.e., the 

hypothesis that the two d.f.s. are the same. A simple probability integral 
transformation carrying z->F(z) would permit us to assume that the support 

Sponsored by the United States Army under Contract No, DAAG29-75-C-0024. 



20 LARS HOLST AND J. S. RAO 

of both the probability distributions is the unit interval [0, 1] and that the 

first of them is the uniform d.f. on [0, 1], For the purposes of this discussion, 

this probability transformation can be done without loss of any generality as 

will be apparent soon. Thus from now on, we will assume that this reduction 

has been effected and that the first sample is from the uniform distribution 

?7(0, 1). Let G* = G o p-1 denote the d.f. of the second sample after the 

probability transformation. The null hypothesis to be tested, specifies 

HQ:G*(y) 
= 

y, 0 < y < 1. ... (1.1) 

Let 0 < Xi < ... < X'm_1 < 1 be the order statistics from the first sample. 
The sample spacings (Dv ..., Dm) for the X-values are defined by 

Dk 
= 

Dkm = 
X??X?_! , k=\, ...,m ... (1.2) 

where we put X0 
= 0 and X'm 

? 1. Tests based on these sample spacings 
have been considered in the literature for the goodnesss-of-fit problems. 

See for instance Darling (1953), Pyke (1965) and Rao and Sethuraman (1975). 
Define for k = 

1, ..., m 

Sk 
? number of %'s 

in the interval [X^_l5 X'k). 
... (1.3) 

Our aim is to study various test statistics based on these numbers {Sly .... Sm} 
for testing H0. These quantities may be called "spacing-frequencies" (since 

they denote the frequencies of y's in the sample spacings of the x's) or the 

"rank-spaeings" (since they correspond to the gaps in the ranks of the #'s in 

the combined sample). Since the numbers {Sjc} as well as the statistics based 

on them remain invariant under probability transformations, there is no loss of 

generality in making such a transformation on the data, as was done earlier. 

It may be remarked here that we take (m?1) instead of the usual m obser 

vations in the first sample since this yields m numbers {Sv ..., Sm} instead of 

(m+1), leading to slightly simpler notation. Tests based on {St} have been 

considered for the two-sample problem in Dixon (1940), Godambe (1961) and 

Rao (1976). 

Our aim is to study the asymptotic theory as m and n tend to infinity. 
We will do this through a nondecreasing sequence of positive integers {mv} 

and {nx] and assume throughout, that as v ?> oo, 

mv ?? oo, nv ?> oo and 
mv/nv 

= 
rv ?> p, 0 < p < oo. ... 

(1.4) 

Note that {Djc} defined in (1.2) depend on mv the number of X-values and it is 

more appropriate to label them as {Dkv}. Similarly the numbers {$#} defined 
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in (1.3) depend on both mv and nv and should therefore be denoted by {Skv}. 
Thus we are dealing with triangular arrays of random variables {Dky, k = 1, 

..., mv} and {Skv, k ? 
1, ..., mv} for v > 1. Corresponding to the v-th (v > 1) 

array, let Av( ) and {A?v( ), k = 1, ..., rav} be real-valued functions satisfying 
certain regularity conditions (see Condition (A) of Section 2). Define 

mv 

?*v= Z A*V(S*V) ... (1.5) 
*=i 

and 

r;= s av(^v) 
... (1.6) 

fc-i 

based on the (mv~l) X-values and the nv 7-values. Though T* is a special 
case of Tv when {hkv( )} do not depend on k, we will distinguish these two cases 

since their asymptotic behaviour is quite different in the non-null situation. 

It may be noted here that the Wald-Wolfowitz (1940) iun test and the Dixon 

(1940) test are of the form T*v while the Wilcoxon-Mann-Whitney test is of 

the form Tv. In fact, any linear function based on the X-ranks in the combined 

sample, can be expressed as a special case of Tv. (cf. also Section 5.) 

A few words about the notations : Though the quantities m, n, r, Dk, Sk 
as well as the functions A( ), {hk( )} depend on v, for notational convenience 

the suffix v is suppressed except where it is essential. Thus for instance, 
m m 

Tv 
= 2 hk(Sk), T*? 

= S h(Sk) and r will stand for (m?n) etc. The probability 
fr=i *=?i 

law of a random variable (or random vector) X will be denoted by <?(X). 
A normal distribution with mean ?i and covariance matrix S will be 

represented by N(/i, S) throughout while N(0, 0) stands for the degenerate 
distribution at the point zero. For 0 < x < oo, p(x) will represent the 

Poisson distribution with mean x and 

7T^) 
= 

e-*.^/j!, j 
= 0,1,2,... ... (1.7) 

the Poisson probability of j. For p 
= 

(pv ...,pm), mult (n, p) will denote 

the m-dimensional multinomial distribution with n trials and cell probabilities 

(Pv >Pm)' A negative exponential random variable (r.v.) with density 

e~w for w ^ o and zero elsewhere (1.8) 
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will be denoted throughout by W while {Wl7 W2, ...} will stand for an 

independent and identically distributed (i.i.d.) sequence of such r.v.'s. The 

random variable tj will have a geometric distribution with p.d.f. 

Pfo=j)=p/(1+P)'+1, i 
= 0, 1,2, ... ... (1.9) 

for 0 < p < oo. 

The following conditional relationship between these distributions is useful 

later on. Let IF be a negative exponential r.v. as above. Let r? denote a 

r.v. which for given W = w, is 7?(w\p). Then the (unconditional) distribution 

of 7j is 

? 
f-W/P 

P(v 
= 

j) 
= 

Err}(Wlp) 
= 

J (w?p)S -^r- 
c~" dw = 

p/(l+p)>+1, j 
= 0, 1, 2, ... 

... (1.10) 

the same as (1.9) above. Thus t? has a geometric distribution if conditional 

on W = w, it has a ^(w/p) distribution. 

Also for any random variable Xn, we write Xn 
= 

op(g(n)) if XJg(n) ?> 0 

in probability and we write Xn 
= 

Op(g(n)) if for each e > 0, there is a Ks < oo 

such that P{ | XJg(n) \ > Ke} < s for all n sufficiently large. Finally [x] will 

denote the largest integer contained in x. 

We shall consider a sequence of alternatives specified by the d.f.'s 

GUV) = y+(Lm(y))lm*, 0 < y < 1 ... (1.11) 

where Lm(0) 
= 

Lm(l) 
= 0 and S > J . In terms of the original d.f.'s F and 

C?, the null hypothesis specifies G = P, while under the alternatives there is 

a sequence of d.f.s. Guthat converge to F as the sample size increases. 

Indeed Lm( ) of (1.11) is given by 

Lm(y) 
= 

m*{Gm{F-\y))-y). 
... (1.12) 

We assume that there is a function L(y) on (0, 1) to which Lm(y) converges. 

For further conditions on Lm( ) and L( ) refer to Assumptions (B) and (B*). 

This sequence of alternatives (1.11) is smooth in a certain sense and has been 

considered before. See for instance Rao and Sethuraman (1975) or Hoist 

(1972). 

The organization of this paper is as follows : In Section 2, some prelimi 

nary results are established. Theorem 2.1 gives asymptotic distribution of 
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functions of multinomial frequencies while Theorem 2.2 establishes a result 

on the limit distributions of non-symmetric spacings statistics, which is of 

independent interest. These results are combined in Theorem 3.1 to obtain 

the limit distribution of Ty under the alternatives (1.11) with S = 
|. It is 

clear that putting Lm(y) == 0 in this theorem, gives the asymptotic distribution 

of jTv under HQ. The problem of finding an asymptotically optimal test for 

a given sequence of alternatives is considered in Theorem 3.2. Some specific 

examples are discussed at the end of this section. Section 4 deals with the 

symmetric statistics T*v. Theorem 4.1 gives the asymptotic distribution of 

T\ under the sequence of alternatives (1.1) with 5= \ while Theorem 4.2 

finds the optimal test among the symmetric tests. It is interesting to note 

that symmetric classes of test statistics T\ can only distinguish alternatives 

converging to the hypothesis at the slow rate of n 4 
unlike the non-symmetric 

statistics which can discriminate alternatives converging at the more usual 
_i 

rate of n 2 . Similar results hold for tests based on sample spacings depend 

ing on whether or not one considers symmetric statistics. See for instance 

Rao and Sethuraman (1975) and Rao and Hoist (1980). Section 5 contains 

some further remarks and discussion. 

2. Some preliminary results 

The following regularity conditions which limit the growth of the 

functions as well as supply smoothness properties, will be needed for the 

results of this and the next section. 

Condition (A) : The real-valued functions {hk( )} defined on {0, 1, 2, ...} 

satisfy Condition (A) if they are of the form 

hk(j)^h(kl(m+l),j), *=l,...,w ? 
= 0,1,2,. (2.1) 

for some function h(u, j) defined for 0 < u < 1, j 
= 0, 1, 2, ... with the 

properties 

(i) h(u,j) is continuous in u except for finitely many u and the 

discontinuity set if any, does not depend onj. 

(ii) h(u, j) is not of the form c >j+h(u) for some function A on [0, 1] and 

a real number c. 

(iii) For some d > 0, there exist constants c1 and c2 such that 

IMn,j)| < cx [n(l-ii)]-i+S. (/2+l) 

for all 0 < u < 1 and j 
= 0, 1, 2, ... ... (2.2) 
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Condition (A') ; The real-valued functions {gjc(*)} defined on [0, oo) 

satisfy Condition (A') if they are of the form 

gic{x) 
? 

g(kl(m+l), x), k = 1, ..., m and 0 < x < oo 

for some function g(u, x) defined for 0 < u < 1 and 0 <; x < oo with the 

properties, 

(i) g(u, x) is continuous in u except for finitely many u and the 

discontinuity set if any, does not depend on x, 

(ii) g(u, x) is not of the form c x-\-g(u) for some function g on [0, 1] 

and a real number c, and 

(iii) for some ? > 0, there exist constants cx and c2 such that 

\g(u9x)\ < c^l-^f ?+^(a2+l) 

for all 0 < u < 1 and 0 < x < oo. ... (2.3) 

We require the following simple lemma, which is stated without proof. 

Lemma 2.1 : Let h(u) defined for 0 < u < 1, be continuous except for 

finitely many u and be bounded in absolute value by an integrable function. 

Then 

m i 

(1/ra) 2 A(Jfc/(m+l))-> J h(u) du as ra-> oo. D (2-4) 
*=i o 

Turning to the main problem, we will obtain the distribution of Tv defined 

in (1.5), essentially in two steps. First we consider the statistic Tv for given 

values of the X-spacings D = 
{Dv ..., Dm}. Since the numbers {Sv ..., Sm} 

given D have a multinomial distribution, we need a result on the multinomial 

sums. We formulate this part of the result in Theorem 2.1. The expressions 

for the asymptotic mean and variance of this conditional distribution of Tv 

given D, are functions of D. In Theorem 2.2, we formulate a general result 

on the limit distributions of functions of spacings, which allows us to handle 

in particular, these expressions for the asymptotic mean and variance. 

Theorem 3.1 of the next section combines these results along with other 

lemmas given there, thus giving the required asymptotic distribution of Ty. 

It is clear that the conditional distribution of the vector of spacing 

frequencies S = 
(Sv ..., Sm) given the spacings vector D = 

(Dv ..., Dm) is 
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mult (n, Dv ..., Dm). Therefore the test statistic Ty9 conditional on D, has 

under the null hypothesis, the same distribution as the random variable 

mv 

Zv 
= 2 hk(9k) 

... (2.5) 
?T=1 

where (9^ ...,9^) is mult (n, Dv ...,Dm). Since the asymptotic mean and 

variance of Zv can be more simply stated in terms of Poisson random 

variables, we introduce a triangular array of independent Poisson random 

variables {?lv, ..., gm v}, v > 1 where %kv is P(nvpkv) and set 

m 

Av= S hk(?kv), 
... (2.6) 

k=l 

?iv 
= 

E(Av), cr2 = 
var(Av). 

... (2.7) 

The following theorem on the asymptotic distribution of the multinomial 

sum Zv can be derived as a special case of Theorem 2 of Hoist (1979) by 

taking Poisson r.v.'s (?kv, hk(?kv)) in place of (Xky, Ykv) of that theorem. 

Theorem 2.1 : Let (<pl5 ...,9^) be mult(n,pv ...,pm) and Zv, /iv, andav 

be as defined in (2.5), (2.6) and (2.7). For 0 < q < 1, set M = 
[mq] and 

M 

Av,= 2 ?*(&). 
... (2.8) 

fc=i 

Assume thai there exists a q0 < 1 such that for q > qQ 

M 
2 pk->Pq9 0<PQ<1, 

... (2.9) 
k=l 

and 

where AQ, BQ and Pq are such that as q-+ 1-0, 

Aa -> Ax, BQ -> ^ and Pa -> 1. ... (2.11) 

TAew a?s j^ ?> 00, 

^-^/^-?^OMx-u?. D ... (2.12) 

A12-4 
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From (2.6) and (2.7) an explicit expression for the mean is given by 

/?v= 2 2 hk{j) ttj (npjc) ... (2.13) 
fc=l i=0 

using the notation (1.7). Under the null hypothesis, we have pk 
= Dk, 

k == 1, ..., m where D are the spacings from ?7(0, 1). Thus we consider 

m ? 

fi(nD) = p?nD) = S S ?*(j)*r,(nD*). ... (2.14) 
?=l i=0 

Wi oo 

This is of the form 2 gjc{mDk) where (/?(a;) = 2 A?( j) 7r? (a:/r). 
k=i i=o 

Statistics based on spacings have been considered earlier by Darling (1953), 
LeCam (1958), Pyke (1965) and Rao and Sethuraman (1975). Most of these 

papers, however, discuss the symmetric case, i.e., when gk(x) 
= 

g(x) for all k. 

As Pyke (1965) pointed out (cf. Section 6.2), LeCam's method could be used 

to study the more general non-symmetric case. Let {gk{ ), k = 1, ..., m} 
be real-valued measurable functions. For 0 < q < 1, let Mv 

= 
[mv q]. 

Define 

M 

GQv= 2 gk(Wk) ... (2.15) 
fc=i 

where {Wv W2, ...} is a sequence of i.i.d. exponential r.v.'s. Then the 

following theorem states explicitly the asymptotic distribution of statistics 

of the type (2.14) and is easily established by checking Assumption (6.6) of 

Pyke (1965). 

Theorem 2.2 : Assume that 

0 < var (GQv) 
== 

o-2(Gqv) < oo for all q and v, ... (2.16) 

and that for each q e (0, 1] 

/ {Gqv-EG9v)l<r{Gu) \ / / 0 \ / At B9\\ M m ]^N[ ( ), ( ... (2.17) 
V S (F*-l)/m* j 

V \ 0 / \ Bg q I 
J 

with Aq and Bq such that 

Aq-* Ax 
= 1 as tf->l-0 ... (2.18) 

Ba -> Bx as q 
- 1-0. ... (2.19) 
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Then, as v-^ oo, 

??(( 
? 

gk(mDk)-EGlv'jl<r(Glv)) 
-> N(0, 1?J3J). ... (2.20) 

wAere (Dv ..., Z>) are spacings from U(0, 1). Q 

The following corollary gives a simple sufficient condition on the functions 

gk( ) in order that the above Theorem holds. 

Corollary 2.1 : The asymptotic normality asserted in Theorem 2.2 holds 

for any set of functions {gk( )} which satisfy condition (A'). 

Proof : To prove this corollary, we need to check that the assumptions 

(2.16) to (2.19) hold when condition (A') is satisfied. It can be easily checked 

that if g(u, x) satisfies condition (A'), then 

00 00 00 

S 9?U> x)e~x dx, J g\u, x)e~x dx as well as J g(u, x)(x? l)e~x dx 
oo o 

satisfy conditions of Lemma 2.1 in u. Thus from the definition of Gqv and 

Lemma 2.1, as m ?? oo, 

[mq] q 

E(Gqv)lm 
= (Urn) 2 Eg(kl(m+1), Wk) -> J Eg(u, W) du ... (2.21) 

k=i o 

[mq] q 
var (Gqx)jm = (1/m) 2 var (g(kl(m+l),Wk)) -> J (var g(u, W)) du 

k=i o 

... (2.22) 
and 

M [mq] 
cov (Gqv, 2 Wk)\m = (1/m) 2 cov (g(kl(m+l), Wk), Wk) 

l k=l 

~> J cov (g(u, W), W) du. ... (2.23) 
o 

Again from (2.3) of condition (A'), all these limits are finite. These are also 

continuous in q so that (2.18) and (2.19) are satisfied. 

Finally to check the asymptotic normality in (2.17) or equivalently of 

[ma] tm0l 

S {a{gk{Wk)-Egk{Wic))+{Wle-\)}= S g*k(Wk), say ... (2.24) 
fc=i Jc=i 
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for all real a, we have only to verify the Lindeberg condition for the non 

identical case. It is easily seen that if {gk( )} satisfy condition (A'), so do 

{gl( )} defined in (2.24). Let 

(r? 
= 

Eg\ (Wk) and sfm] 
= 2 erf. ... (2.25) 

* k=l 

Since {gl( )} satisfy condition (A'), we have as in (2.22) that 

[mq] oo o 

afmgI/? 
= (l/m)2 jg\(w)tr"?w 

... (2.26) 
k=i o 

converges to a finite non-zero constant from Lemma 2.1. Now consider 

[mQ] 2 

(i/^)s j 0;(*)6-*<fe 

< (mlsfmq]) 
. dim) 2 J c1[(fc/(m+ i))(i_ t/(m+l)]-i+2' 

(a;C2+l)2e-^da; 

< {^/^?{(l/m) S [(?/(m+l))(l-i/(m+l))]-1+25} 
#=i 

{ J (xe*+l)*e-*dx). 

As m ?> oo, the quantities in the first two parentheses remain bounded because 

of (2.26) and Lemma 2.1 while the integral in the third parenthesis goes to 

zero for any e > 0 since s[mq^ is of order (\/m) from (2.26). Thus the Linde berg 

condition is satisfied for (2.24) which proves the assertion. 

3. Asymptotic distribution theory for 

non-symmetric statistics 

We define for later use, the following additional functions 

00 

gx(u, x) 
= 2 h(u, j) tt^x), 

... (3.1) 

00 

g2(u, x) 
= 2 h2(u, j) tt} {x) ... (3.2) 

and 

g3(u, x) 
= 2 h(u,j)(j-x) n} (x). ... (3.3) 

J-O 
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When h(u, j) satisfies condition (A), these functions are well defined for x > 0. 

Further gx and gr3 satisfy condition (A'). For instance condition (iii) of (A) 

implies condition (iii) of (A') for gx since 

I 00 

\gx(u,x)\ 
= i 2 h(u,j)nj(x) 

< SCiMl-ttjf^a+^^W 
;=o 

<c;Ml_w))-*+s(1+/2) _ (34) 

using the moments of the Poisson distribution. To see the role of these 

functions gv g2 and g3, recall the representation of r? given in (1.10). Let 

Em Vw denote the expectation and variance over W while En?w Vn\W denote 

the conditional expectation and variance over 7} given W. Then from the 

definitions of gl9 g2, gz 

Enh(u, ri) 
= 

EwEnlw h(u, r/) 
= 

Ewgi(u, W\p) 
... (3.5) 

Enh*(u, 7i) 
= 

EwEn, w h\u, 7i) 
= 

Ewg2(u, W/p). ... (3.6) 

And after some elementary calculations, 

P^+P)-1 COV (h(u, 7?), 7?) = 
EWEn]W [h(u, 7?)(7}- W/p)] 

= 
cov(gi(u, W/p), W) 

= 
Ew gs(u, W/p). ... (3.7) 

Define 

1 , 1 ,2 

a-2 = 
j var ?^ ^ ?u__ j cov (h(Uj ̂  y) du /var (t?). ... (3.8) 
0 \ o / 

From the Cauchy-Schwartz inequality 

/ 1 \2 , 1 i2 

( J cov (A(w, 7/), ??) du J < f J (var h(u, 7/))*(var ?/)* dw 1 

< var (t?) ( J* var A(w, 9/) dw 
] 

with equality if and only if h(u, j) = c j+h(u) for 0 < u < 1 for some real 

number o and some function h(u). Thus a*2 > 0 for any function h(u,j) 

satisfying condition (A). For x = 
(xv ..., xm), we define 

?>v m co 

/i(x) = fiv(x) = 2 g1(kl(m+l), xk) = 2 2 hk(j)nj(xk) ... (3.9) 
*=i *=i ;=o 

and observe that /?(wD) corresponds to the statistic in (2.14). 
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Before we proceed to state the theorem which gives the asymptotic 

distribution of Tv under the alternatives, a few words about the sequence of 

alternatives. Consider the F-observations from the distribution function 

given in (1.11), (1.12), with S = 
i i.e., 

4?> : GUV) = Gm{F-\y)) 

= y+Lm(y)lmK 0 < y < 1. ... (3.10) 

Assumption (B) ; For the alternatives in (3.10) with S = 
|, assume that 

there exists a continuous function L(y) such that for 0 ^ y ^ 1, 

Lm{y) 
= 

m*[Gm(-F-%))?y] -> ?(y) as m -> oo. 

Also suppose that the derivatives L'm(y) and L\y) 
= 

%) exist and are 

continuous outside some fixed finite subset in [0, 1] and that finite left and 

right limits of the derivatives exist on the open interval (0, 1). 

Given the X-sample, the probability of a F-observation falling inside 

[Xk_v X?), under the null hypothesis is given by the uniform spacings {Dk}. 
On the other hand, under the alternatives (3.10), this probability is given by 

DI = Gm{F-\U'k))-Gm{F-\UU)) 

= 
Z>*(l+A*/m*) 

... (3.11) 

where U'k, k = 1, ..., m are order statistics from ?7(0, 1) with U'0 
= 0, U'm 

= 1 

and 

Ak = 
[Lm(Uk)-Lm(U'k_1)]IDk. ... (3.12) 

Note that Dk > 0 with probability one so that A*? is a well-defined 

random variable. We now state the main theorem of this section, whose 

proof will be completed in Lemmas 3.1 to 3.7. The conditions of this 

theorem may be slightly weakened but at the expense of added complexity. 
In any case, the present conditions cover most cases of statistical interest. 

Theorem 3.1 : Let 

m 

Vv 
= 2 (hk(Sk)-Ehk(V))lm* 

- cr ... (3.13) 
k=l 

where cr is defined in (3.8). In addition to Assumptions (A) and (B) assume 

that for some small ? > 0, 

\Lm(t)-Lm(s) | < c3(ia-5a) for 0 < s < t < 6 

and for (1?e) < s < t <; 1 ... (3.14) 
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where 7/8 < a < 1. Then under the alternatives (3.10), 

?(Vy)->N(b,l), 
... (3.15) 

where 

i 
b = J cov (h(u> 7?), 7j) l (u) du pl(l+p) c. 

o 

Proof : Observe first that the centering constant in (3.13) may be 

rewritten, using relation (1.10) 

m m ? 

2 Ehk(7?)= 2 2 hk(3)E7?i(W?p) 
&=1 fc=l j=0 

= 
Efiv(W?p) ... (3.16) 

where ?iv(x) is defined in (3.9) and W = 
(Wl9 ..., Wm) are i.i.d. exponential 

r.v.'s. As explained in Section 2, the vector (Sl9 ..., Sm) given D* is mult 

(n, D*) where the m-vector D* has the components D\ given in (3.11). Using 
conditional expectations, we may write 

E(e^vv) = E E(e^Vv\D*) 

= 
E(Jv(iD*)Ky(D*)) ... 

(3.17) 
where 

JV(D*) = exp (itm-i \ji {nD*)-E/i (W?p)]) ... (3.18) 
and 

KV(D*) = 
e( 

exp 
(?im-i[ 

S hk(8k)-/i(n 
A*)] )|l>'). 

... (3.19) 

Now from Lemma 3.4, it follows that 

E{Jy(D*)) -> exp {ibt-ct2?2) 

with 6 and c defined in (3.38) and (3.39) respectively. Hence 

?(m-i[pv(nD*)-Eii(Wlp)])-> N(b,c) ... (3.20) 

so that JV(D*) converges in distribution. By Lemma 3.5, with probability 

one, i.e., for almost every random vector D*, 

KV(D*) -> e-***'* (3.21) 
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with d as defined in (3.43). Combining (3.20) and (3.21), with probability 
one, the product JV(D*)KX(D*) converges in distribution. But since 

| JV(D*)KV(D*) | < 1, this also implies the convergence of the moments so that 

E(JV{D*)KV(D*)) -> exp (ibt-(c+d)t*?2). ... (3.22) 

Using the continuity theorem for characteristic functions and Lemma 3.7, 

the assertion of the theorem follows. 

Lemma 3.1 : If the conditions of Theorem 3.1 hold, then 

m-* 2 2 h(kl(m+l), j)Midfy-n?nDk)\ 
Ar=l ;=o 

m oo 
= m-1 2 A* 2 h(kl(m+l),JXJ-nD^inD^+o^l) ... (3.23) 

where Ak is as defined in (3.12). 

Proof: Applying the Cauchy-Schwartz inequality on the difference of 

the two sides in (3.23), we have 

m~* 2 2 hU^inDD-n^nD^l+U-nDk) A*/m*}] 
*=i j=0 

< m-* 2 2 \hfc(j)\ \exp{jlog(l+Aklmi)-nDkAklm* 
ifc=i j=o 

? 1 -(j-nDk) Ak/m* \ 7Tj{nDk) 

n~* 2 [ 2 h%j)7Tj {nDktf [ 
2 |exp {jlog(l+Aklmi)-nDkAklm*} 

^l^j^^^A^/m^l2^^)]*. 
... (3.24) 

After some elementary calculations, we see that the term in the second square 

bracket is 

exp (DkA?lr)-1 -D*A j/r. 
... (3.25) 
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Since h(u, x) satisfies condition (A), using Theorem 2.2 and (3.25), it is clear 

that the right hand side of (3.24) can be estimated by 

m-* 2 ^.^/(m + l^^Kl+im^)02^^^ 
?=i 

= 
max(Af/m*) Op(l). 

... (3.26) 
k 

Now we show that this max (Af/m*) goes to zero in probability when a > 7/8. 
Observe that by (3.14) 

| A*/m* | = | Lm(Ui)-Lm(UU) I / * Dk 

<(U?-U?L1)lm*-Dk 

<D*klm*-Dk 
... (3.27) 

since (t*?sa) < (t?s)a for 0 < s < t < 1 and a < 1. Also from Darling 

(1953) for any e > 0, we have 

1/ min (m2+e Dk) = 0P(1). 

Therefore from (3.27) 

max lA^/m^l <O??(m(2+8>(1"a)-i). ... (3.28) 

Since oc > 7/8, by choosing 0 < e < (4(1?a))-1?2, max |&k?m*\ -? 0 in 

probability. This proves the lemma. 

Lemma 3.2 : If the conditions of Theorem 3.1 are satisfied then, for any 

?>0, 

[me] oo 

Urn sup?m-1 2 A* 2Hkl(m+l)9j)(j-nDk)n,(nI>k)\<Kta+? ... (3.29) 
m ?>oo k=l y=0 

with probability one. 

Proof : In terms of gs(u, x) defined in (3.4) and which satisfies condition 

(A'), the expression in (3.29) is 

[mc] 

m-i 2 &kgz(kl(m+l),nDk) 
k=>i 

[me] 
= 2 [Lm(Uk)~Lm(U'k^)]gz(kl(m+l), nDk)(rnDk)~\ ... (3.30) 

A12-5 
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Using condition (3.14), and writing M = 
[mg], this is 

0< 

M 
2 [LM)-Lm{U^x)] g8 (*/(m+l), it/)*) I (mD*)-1 i 

< clCs 2 (J/?-?/?LiXfc/m^l+?AD*) 2]. ... (3.31) i 

We now make use of the representation of the spacings in terms of i.i.d. 
? k 

exponential r.v.'s Wv W2, ... with mean 1. Writing Wk = 2 Wjjk, the 

RHS in (3.31) is 

cOH0 M _ _ _ 

?7 . A S [WtHk/M)?- W%^{{lc-l)IMYlklM)<>. (fl$+ W*) 
Wa+C2 1 rr m 

= G - 6?+'. f^"*'2' if-1! ?Ff-i(*/Jf)?+'-i(?P?+1+ if? ^5) 

'[{?-ii-wtik.wirymkwt)]. ... (3.32) 

Now as k ?> 00, ?Fj; ?> 1 a.s. and Wk? ?> 0 a.s. so that 

{1-(1- WklkWtf}HWtlkWt)-> a a.s. ... (3.33) 

Using the Holder inequality, 

~ 
| 

Wr< (W+<->W?+' Rl-(1?WtlkWt)-)HWtllcW,)] 

<[i?wr"p[?fwJo'**'] 
1/JP, 

Uf! J U, \ WkiikWje) H 

n 
Using the fact that if ak 

? 1 as k -? oo, w12 a? -? 1 as n -? oo, the RHS 
i 

in (3.34) converges a.s. to the finite limit 
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Similarly the other term involving Wk* W*? in (3.32) can be handled so that 

we get the desired result. -Q 

Lemma 3.3 : Under the conditions of Theorem 3.1, 

m-1 2 &kgz(kl(m+l),nDk) 
k~i 

l 

?> J l(u) cov (h(u: 7j), 7j) du (pjl+p) in probability. ... (3.35) 
o 

Proof : For any fixed e > 0, we may consider the sum in (3.35) as Consist 
?e] [m(l-e)] m 

ing of 3 parts viz., 2 , 2 and 2 . Lemma 3.2 shows that the first 
fc-l ?-[me] jfe-[m(l-e)j 

sum is negligible. A similar analysis can be used to demonstrate that the third 

term is also bounded a.s. by Ke*+?. In view of (3.7), it is enough to show that 

[m(i-a)] 1-* 

m-1 2 A*gf3(?/(m+l), nDk) 
- 

? l(u) E(gs(u, W/p) du ... (3.36) 
k-[tnt] t 

in probability. The proof will then be complete since e is arbitrary. 

By our assumption L'm(y) 
= 

lm(y) exists and is continuous except possibly 

for a finite number of points on (?, 1?e). If lm(y) is continuous, then bounded 

ness of lm(y) along with the fact g3(u, x) satisfies condition (A') allows us to 

apply Theorem 2.2 as follows : from the Glivenko-Cantelli theorem, 

max | A*;?lm(k?m+l) \ ?> 0 with probability 1. 
k 

Also from Theorem 2.2, 

[m(i-?)l 

m-1 2 gs(k!(m+l), nDk) - 0^(1). 
k-[me] 

Hence the sum in (3.36) has the same probability limit as 

[ma-?)] 

m-1 2 lm(kl(m+1)) 
- 
g3(kl(m+1), nDk) 

k=[me] 

which from Theoren 2.2 is the required limit given in (3.36). 

Now if lm( ) has a finite set of discontinuity points inside (6, 1 ? 
e), this 

will not create any problem since the function is bounded in this intervajt 
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Suppose that lm(y) is continuous in (0, 1) except at y = 
yQ. By our assump 

tions lm(y) has finite left and right limits at this point and the point does 

not depend on m. Take S > 0 so that 0 < y0?8 < y0-}-S < 1. From our 

assumptions and the Glivenko-Cantelli theorem it follows that with probability 

one, | A a: | is bounded whenever | k\m?y? \ <8 and m is sufficiently large. From 

this it is easily seen by analogous arguments that the contribution to the sum 

(3.36) from such terms in the neighborhood of y0 can be made arbitrarily small 

by choosing 8 sufficiently small. It is obvious that the situation of a finite 

set of discontinuities of the first kind can be handled the same way, if 

the discontinuity set does not depend on m. This completes the proof of 

Lemma 3.3. 

Lemma 3.4 : Let 

JV(D*) = exp (Um-* [?y(n D*)-Efi{W?p)]) 

be as defined in (3.18). Then under the conditions of Theorem 3.1, 

E(JV(D*)) -> exp (ibt~ct2/2) 
... (3.37) 

where 

i 
b = I cov {h{u, r?)9 r?) l(u)du p/(l+p) ... (3.38) o 

and 

c == 
?varg^u, W?p)du?( J cov(W, gx{u, W?p))du) 

. ... (3.39) 
0 \ 0 / 

Proof: We can write 

JV(D*) 
= 

exp (itm-^v(nD*)-/iv(nD)]+[j^v(nD)~E^v(Wlp)]). 
... (3.40) 

In Lemmas 3.1 to 3.3, we already established that the first part m~*[/iv(nD*) 

?fiv(nD)] converges in probability to b. Thus we need only show that 

?/(exp (?m-*[p,(nD)?E/iv(Wlp)])) -> exp (-ct2/2). 
... (3.41) 

Since g-^u, x) satisfies condition (A'), Corollary 2.1 of Section 2 holds and the 

asymptotic normality of 

fiv(nD)= 2V g^k/im+l), nDk) 
k=i 
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is assured by Theorem 2.2. Further var (gx(u , W/p)) and cov (W, gx(u, Wjp)) 
as functions in u, satisfy the conditions of Lemma 2.1, so that as v ?> oo 

. m v mm , 

-War 2 gi(kl(m+l), Wk?p) -m~2 cov2 ( 2 Wk, 2 g(k?(m+l), Wk\p) 
\ A;=l 7 Nil / 

1 / 1 v2 
-> I v^r(g1(u, Wlp))du~( J cov (If, gx(u9 W?p))du) 0 \ 0 / 

-c.D ... (3.42) 

Lemma 3.5 : Under the assumptions of Theorem 3.1, with probability one, 

i.e., for almost every D* 

KV(D*) = El exp [itm-*\ 2 hk(Sk)-/i(nD*))\ j D*J 

->exp(-dt2l2) 
where 

d = i E[g2(u, WIP)-9l(u, Wlp)fdu-p ( ) Eg3(u, W?p)du)". 
... (3.43) 

0 v 0 ' 

Proof : The lemma will be proved by verifying that the conditions of 

Theorem 2.1 hold and showing d = 
Ax?B\. First we have by the Glivenko 

Cantelli theorem that with probability one 

M 
2 Dl 

= 
U'M+m-* Lm(U'M) ^q^Pq ... (3.44) 

fc=i 

where M = 
[mq] and Uk is the ?-th order statistic from ?7(0, 1). Clearly 

since PQ 
= q?? 1 as g ?> 1 ?, conditions (2.9) and part of (2.11) of Theorem 

2.1 hold. For real numbers a and b, consider 

h(u>3) 
= 

ah(u,j)+bj. ... (3.45) 

It is easy to verify that if h(u,j) satisfies condition (A), then so does hx(u,j). 
Consider 

M 

? 
= m-*2 W%+l),6)-^iW(w+l),6)) ... (3.46) 

k=i 
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where fl9 ..., ?m are independent and ?k is p(nD*k). From the assumptions, 
it follows that for some positive constants cl9 c2, ... we have 

M 

V(Q 
= m-i 2 var (^(?/(m+1), &)) 

M 6 
<mr^c1 2 P/im+lJKl-^m+l))]^!):)2^!) 

*=*i 

<m?V1 2 [(kl(m+l))(l-kl(m+l))Y(nDl)e*+ct 
k-i 

I m e c \ 

<c; 2 (nDl)*?m)5 +c8 ... (3.47) 

by the Holder inequality and Lemma 2.1. From the assumption (3.14), 

nDl 
= 

nDic+niLmiUi??LmiU't^))! 
-* 

< nDk+KxDk m*+K2 D% rr* 

< K3(mDk)+K2(mDk)*m*-*. ... (3.48) 

Using the representation mDk = 
(WkIWm), it follows by the strong law of 

large numbers that for c > 0, 

lim m^1 2 [mDjcY 
m ?> ?o 1 

is finite with probability one. As a > \, we have, using the binomial theorem 

mm i 

m-1 2 {mDlp < m^X 2 (X3mZ>*+X2(mZ>*)a7n*-"-fl)C6+1 
-> X4 

i i 

with probability one. Thus with probability one 

lim sup var (Q < oo. ... (3.49) 

Now we will verify that 

liminf var(Q > 0. ... (3.50) 

By assumption (A), it follows that there exists an interval [a, b] C (0, 1) and 

integers jx ̂  j2 such that hx(u,jx) ̂  hx(u,j2) for a < u < 6, Again from the 
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strong law of large numbers and our assumptions, it is easily seen that for any 

0 < C < D < oo, with probability one 

=H= {k: a < k?(m+l) <b, C < nD\ < D}/m -> Kx > 0. 

Therefore for n sufficiently large, 

var (Q > 2 var (A1(A/(m+1), &))/m > K% > 0 
a(m+l) < * < ?>(w+D 

with probability one. Hence (3.50) is satisfied with probability one. In a 

similar fashion it follows that 

m 
lim sup 2 Elh^kKm+1), ?k)\%+'?m < oo. 

*?i 

Therefore the Liapunov condition 

M 
2 E | h1(k?(m+1), h) ! a+e/( var (Q) 

* 
i 

M 
= m-'2 2 ^ | A1(Jfc/(w+1), (t) ! a+8/(var (Q)1+4/2 m 

i 

-> 0 as m?> oo, ... (3.61) 

is satisfied with probability one. Thus 

??Ovar (?))*) -> #(0, 1) 

with probability one. By the next Lemma 3.6, we have that in probability 

var 
(Q -> (azAq+2abBqp^+b2qp-1) 

where Aq ->AV Bq -J>B1 as q ?> 1 ?. This verifies that the assumptions of 

Theorem 2.1 are satisfied with probability one. From the definition (3.43) 
of d as well as the expressions (3.54) and (3.55) for Aq and Bq, it follows 

d = 
^1-?2 ... (3.52) 

which proves the lemma. 

Lemma 3.6 : Given D*, let (?l9 ..., i;m) be independent and %k be ^(nDj). 
Under the assumptions of Theorem 3.1 

m 
m"1 2 var ^(?/(m-J-1), ?*)) -> a^Aq+2abBqp^+b^f-1 ... (3.53) i 
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in probability where 

Aq 
= 

f EMu> Wlp)-gi(u, Wjp)]* du ... (3.54) ? 

and q 

Bq 
= 

p-i ? E(g3(u, Wjp)) du. ... (3.55) o 

Proof : Recall from (3.45) that hx(u,j) = 
ah(u,j)+bj. By calculations 

similar to those in Lemma 3.1, it follows that, for instance 

M ? 

m-1 2 2 A2(?/(m+l),j)[7r^Z>*)-^(nD^)]^0 
fc=i i=o 

in probability. Using Theorem 2.2, we get 

M q 
m-1 2 A2(?/(m+l),j)7T^Z)^-> j (Eg2(u, Wjp)) du 

fc=i o 

in probability. Therefore 

M q 
m-1 2 EWikKm+l), ?*) -> J (%2(^, Wjp)) du. 

i o 

The other terms can be handled analogously which proves the assertion. 

Lemma 3.7 : 

c+d 
= (T* ... (3.56) 

where c, d, tr2 are defined in (3.39), (3.43) and (3.8) respectively. 

Proof : From the definitions (3.39) and (3.43) of c and d and from identities 

(3.5), (3.6) and (3.7), we get 

1 / 1 v 2 

c+d = J var (g^t*,- W?) du? J cov (If, ̂ (w, Wjp)) du) o W / 

+ } E\g?u, Wlp)-gt(u, Wlp)fdu-p( / Eg3(u, Wjp)?S 0 \ 0 / 

1 1 
= J Fw(???| w(H% y))) du+ J Ew{Vn \ w(h(u, v))) d^ 

0 0 

-(!+/>) 
[ 

? cov {h(u, y), y) pj(l+p) 
du^ 

1 r i 
y? == J var (A(w, 9/)) dw? J* cov (A(w, ?/), 9/) du p2j(l+p) 

0 L 0 J 

= <r2. ... 
(3.57) 
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These lemmas 3.1 to 3.7 complete the proof of Theorem 3.1. The 

following lemma gives a simple sufficient condition for (3.14) to hold. 

Lemma 3.8 : A sufficient condition for (3.14) to hold in a neighborhood of 
the origin is that 

0 < L'Ju) < c - u*-1 for 0 < u < e. ... (3.58) 

Proof : We have for 0 < s < t < ? 

0 < | (cu^-L'Ju)) du = c(t?-s?)lot-(Lm(t)-Lm(s)). s 

Since Lm(0) 
= 0 and L'm(u) !> 0, the assertion follows. 

Corollary 3.1 : Under the null hypothesis (1.1), the asymptotic distribution 

of Vy defined in (3.13) is N(0, 1). 

This result is a direct consequence of Theorem 3.1 and is obtained by 

taking l(u) ̂  0, 0 < u < 1 in (3.15). This corollary regarding the null distri 

bution of Vv can also be reformulated in the following interesting form using 
Lemma 2.1. 

Corollary 3.1' : Let 7?x,r\2, ... be a sequence of i.i.d. geometric random 

variables with p d.f. given in (1.9). Then the asymptotic null distribution of 
m im \ / m m v 

S hk(Sk) is N(E[ 2 hk(7ik) , var 2 hk(7ik)-~? 2 7?k where ? is the 
i x i ' v i i ' 

regression coefficient given by 

, m m v i , m > 

? = cov 
| 

2 hk(7jk), 2 
7/fcj 

I var ? 2 
t/^J. 

See also Holst (1979), example 2. We now consider the problem of 

finding the optimal choice of the function h(u, j) for a given alternative sequence 

(3.10), i.e., a given sequence of functions Lm(u) with the property 

Lm(u) 
= 

m*(Gm(F-l(u))?u) -> L(w) as m-> oo. ... (3.59) 

Theorem 3.2 : If the sequence of alternatives is such that the assumptions of 
Theorem 3.1 are fulfilled, then an asymptotically most powerful (AMP) test of the 

hypothesis against the simple alternative (3.10) is to reject H0 when 

m 
2 l(k?m+l)Sk > c ... (3.60) 
?;=i 

a 12-6 
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where I is the derivative of L, mentioned in (3.59). The asymptotic distribution 

of this optimal statistic is given by 

i m \ 
cQlm-t 2 

l(kj(m+l))(Sk-ljp)) ->X(0, <r2) ... (3.61) 

under H0 with 

or* = I 
?l\u) du)(l+p)jp2 

... (3.62) 

while under the alternatives (3.10) satisfying (3.59) 

I 
m . , i . 

Arnr* 2 l(kj(m+l))(Sk~ljp)) ->X(/>-1 J Z2(^) dw,-cra , ... (3.63) 
\ k=i / o / 

Proof : From Theorem 3.1, it follows that the asymptotic power of the 
m 

test which rejects HQ when 2 h(kj(m-j-l), Sk) > c is determined by 
?=l 

1 / r 1 

Ph = j cov (?(^, 7/), ?/) l(u) du / J* (var h(u, t?)) du 

f 
1 ,2 -i* 

- J J cov (A(w, ?/), 7/) dw > / var (r?) . ... (3.64) 

Using the same argument as in Lemma 3.1 of Hoist (1972), we have that this 

quantity is maximized when 

h(u,j) 
= 

l(u)-j. 
... (3.65) 

The results on the asymptotic distributions follow directly from Theorem 

3.1 and Corollary 3.1 for the above special case. 

From this result, it follows that the AMP test of level a is explicitly given 

by : Reject HQ if 

r rn - r , i i ni 

j V_l{kj{m+\){Sk-ljp) j j \m ( J l*(u) duj(l+p)p^ ] 
> Aa ... (3.66) 

where Aa is the upper a-percentile of the iV(0, 1) distribution. Also from 

Theorem 3.2 we find that the asymptotic power of this test in terms of the 

standard normal c.d.f. is given by the expression 

*(-*?+( Sl2Wduj(l+p)f). 
... (3.67) 
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Furthermore it is easily seen from Theorem 3.1 that the Pitman Asymptotic 
Relative Efficiency (ARE) in using h(u, j) 

= 
d(u) >j for some function d on 

[0, 1] instead of the optimal h(u,j) = l(u) j is 

e = / f d(u)l(u)du \2j { J d2(u)du-( } d(u)du\ 2}j J Z2(^)cfel ... (3.68) 

3.A. Example : translation alternatives. We now consider some appli 
cations of the above results on non-symmetric tests. First we shall look at 

the translation alternatives. Let Xv ..., Xm_1 be absolutely continuous 

i.i.d. random variables with distribution F. Let Yl9 ..., Yn be i.i.d. with 

d.f. G. We wish to test 

#0 : G(x) = F(x) 

against the sequence of translation alternatives 

A&> : G(x) 
= 

Gm(x) 
= 

F(x-d\m?). 
... (3.69) 

Let f(x) 
= 

Ff(x) be continuous. Then as m ?> oo 

Lm(u) 
= 

m\Gm(F-\u))-u\ -> -df(F~\u)) 
= 

L(u), say. ... (3.70) 

And iff'(x) exists and is continuous except for at most finitely many #'s then, 
at the continuity points of fr(F~\u)) we have 

Uu) -> l(u) = - 
6f\F-\u))lf{F-\v)). ... (3.71) 

We now illustrate how Theorem 3.2 may be used to obtain the asympto 

tically optimal test statistic based on 
{Sk}. 

Example : (A van der Waerden or normal score type test) : For the 

normal d.f. 

F(x) 
= 

<J>(x) 
= 

(2n)~* J exp (- \t^)dt, 
- oo < x < oo 

? ao 

we find 

-f'(F-\u))lf(F-\u)) = 4>-H?). 

It is easy to check that the required regularity conditions of Theorem 

3.1 are satisfied. Hence the AMP test is based on the statistic 

m 
T= S (D-^m+l))?* ... (3.72) 
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from Theorem 3.2. Using the facts 

1 ? m 

J (O-1^))2^ = 
J x2y(x)dx = 1 and 2 O-^Jk/im+l)) 

= 0, 
0 -ao fc=l 

we have under the null hypothesis that 

(T/w*) -> N(0, (l+p)?p2). ... (3.73) 

From Theorem 3.2, the asymptotic power for a one-sided test of level a is 

0( 
? 

Aa+0(1+/?)-*), the same as that of the Student's ?-test. 

To find the Pitman efficiency of the Wilcoxon test relative to the optimal 
test based on (3.72), we only need to calculate (3.68). Since 

.J (2u-l)Q)-1(u)du = 
f 2(?(x)-l)x y(x) dx = 2 f (<p(x))2 dx = 77-* 

0 ? oo ? oo 

1 1 

and J (2u-~l)2du 
= 

1/3, J (<S>-\u)Y du = 1, using formula (3.68) the ARE of 
o o 

Wilcoxon test versus the normal scores type test 

e = 
3/tt. ... (3.74) 

The test statistic (3.72) has the same asymptotic properties as the 

Fisher-Yates-Terry-Hoeffding and van der Waerden's rank tests. 

3.B Example : scale alternatives. Next we consider absolutely continuous 

positive random variables under scale alternatives. Let Xv ..., Xm_x be i.i.d. 

F(x) and Yv ..., Yn be i.i.d. G(y) with F(0) 
= 

0(0) 
= 0. We wish to test 

H0:G(x)= F(x), ... (3.75) 

against the scale alternatives 

H["> : G(x) 
= 

Gm(x) 
= 

F(x(l+6?m^)). ... (3.76) 

If the density f(x) 
= 

F'(x) is continuous, then as m ?> oo, 

Lm(u) 
= 

m^GUF-^uV-u)-* L(u) 
= - 

df(F~\u)) 
. 
F~\u). ... (3.77) 
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And if f'(x) exists and is continuous except for finitely many points, then 

analogous to (3.71), 

Uu) -> if*) = -d[l +f'(F-\u)) 
- 
F-\u)jf(F-\u))} ... (3.78) 

where /' exists. Optimal statistics based on {Sk} can be derived just as in the 

case of translation alternatives. 

Example : (Savage or exponential score test). For the exponential 
distribution F(x) 

= 
(1?e~x) for x > 0 we find 

l(u) 
= - 

#(l+log(l-*?)). ... (3.79) 

The assumptions of Theorem 3.1 can be verified and hence an optimal statistic 

is given from Theorem 3.2, by 

m 
T= 2 log (l-kj(m+l))(Sk-ljp). ... (3.80) 

fc=i 

i 

Since j (l+log(l?u))2du 
= 1 we get that 

o 

c?{Tjm*) -> N(0, (l+p)jp2) ... (3.81) 

and that the asymptotic power is 

?(-Aa+d(l+p)-i). ... (3.82) 

The ARE of Wilcoxon statistic relative to T in (3.80) above is 3/4. The 

statistic T is an approximation to the Savage statistic (see Lehmann, 1975 
m?1 n 

p. 103). The UMP test for the above situation is the test based on 2 Xkj 2 Yk 
k=*l fc=l 

which has the same asymptotic power (3.82) as the statistic T in (3.80). 

4. Asymptotic distribution theory for symmetric statistics 

This section deals with the class of statistics symmetric in {Sv ..., Sm], 

i.e., statistics of the form 

T*= ?h(Sk) ... (4.1) 
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for some given function h(j). Such symmetric tests are an important subclass 

of the rotationally invariant tests and hence are suited for testing the equality 

of two circular populations. Clearly this class of symmetric statistics is also 

covered by the asymptotic theory discussed in the last section. Indeed if the 

function hk(j) does not vary with k, i.e., the function h(u,j) of the last section 

is a function only of j and is independent of u, then we obtain the symmetry 
i 

in the numbers [Sl9 ..., Sm}. But since J l(u) du = 0, it follows from Theorem 
o 

3.1 and Corollary 3.1 that the asymptotic distribution of?7* under the sequence 

of alternatives (3.10) coincides with that under the null hypothesis. Thus 

symmetric statistics of the type (4.1) cannot distinguish alternatives that are 

at a 'distance' of n~* and have power zero against such close alternatives. 

Therefore in order to make efficiency comparisons, we have to consider the 

more distant alternatives with 8 = 
1/4 in (1.11). Let 

4? : G&y) = 
y+Lmiy)?mW, 0 < y < 1 

with 

Lm(u) 
= 

mV\Gm{F-\u))-u). 
... (4.2) 

For this symmetric situation, we will make the following slightly stronger 

assumptions : 

Assumption (B*) : Assume Lm is twice differentiate on [0, 1] and there 

is a function L(u), 0 < u < 1, which is twice continuously differentiable and 

such that 

?(0) 
= 

?(1) 
- 0, sup \L?(u)--L\u)\ 

= 
o(l) ... (4.3) 

where V = I and L" = V denote the first and second derivatives of L. 

Notice that for such smooth alternatives, the following also hold : 

sup \Lm(u)-L(u)\ =o(l), sup \L'm(u)-l{u)\ 
= 

o(l). ... (4.4) 

We define analogous to (3.11) and (3.12) 

D? 
= 

Dk(l+Aljmv*) with A*c 
= 

[Lm(Uh)-Lm(Uk_x)]IDk. 
... (4.5) 

We observe that under the above regularity conditions, we have 

max |AJ| < sup \lm(u)\ < K < oo. ... (4.6) 
1^ k^m 0^ m^1 
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The following theorem gives the asymptotic distribution of the symmetric 
statistics T* under the alternatives (4.2). 

Theorem 4.1 : Suppose that there exist constants c? and c2 such that 

\Mj)\ <c1(/2+l)/oraZZj. ... (4.7) 

Let Lm(u) satisfy Assumption^*) and let 

m 

P;= 2 (h(Sk)-Eh(7i))?m^cr ... (4.8) 
fc=i 

where 
a2 = var (h(7?))?[cov (h(r?), r?)]2?var (r?) ... (4.9) 

and t? is the geometric random variable defined in (1.9). Then under the 

alternatives (4.2) 

<?(V*)->N(A, 1) as v -> oo ... (4.10) 

where 

A=[\ l2(u)du\ cov(h(7?), 7i(7}-l)-47ilp)p2l2(l+p)2(T. ... (4.11) 

Proof : Following the method used in the proof of Theorem 3.1, it suffices 

to show that 

m~* [fly(nD*)~ju,v(nD)] ?>A in probability. 
We have 

m-*[ju,v(nD*)-fiv(nD)] 

m oo 
= m-* 2 2 hU^n^nDD-rr^nDfc)] 

m oo 
= m-* S 2 h(j)n}(nDk)[( 1 + A*/??1'*)/ exp ( 

- 
raZ>*A?t/m1'4) 

fc=l ?=o 

_l_j_WjDA;A*/m1/*-{j(j-l)-2>2)&+(?I>i)2}A|/m* 
m oo 

+w-?>4 2 2 h(j) TrunD?iJ-nDjk) A* 
fc=i y=o 

?? 00 

+WI-1 2 V m)n}{nDk){j(3-l)-23nDk+{nDk)*} ?%\2. ... (4.12) 
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After some direct but tedious calculations, it may be verified that the 

probability limits of the first two terms on the RHS of (4.12) are zero while 

that of the third term is 

( 
J l\u)du) 

- (cov (%), v(v-l)-mP) -p2j2(l+p)2 
) 

under the assumptions, thus completing the proof. 

Taking l(u) = 0, 0 < u < 1 in Theorem 4.1 or putting hk(j) 
= 

h(j) -y- k 

in Corollaries 3.1, 3.1', we get the following result on the asymptotic null 

distribution for the symmetric statistics. 

Corollary 4.1 : Let V*v be as defined in (4.8). Then under the null hypothesis 

(1.1) F* has asymptotically a N(0, 1) distribution if the function h( ) satisfies 
condition (4.7). 

As in Theorem 3.2, we now consider a result on the optimal choice of the 

function h( ) for the symmetric case. 

Theorem 4.2 : For the sequence of alternatives given by (4.2), satisfying 
the conditions of Theorem 4.1, the asymptotically most powerful (AMP) test is of 
the form : Reject H0 when 

m 
2 Sk(8k-l)>c. ... (4.13) 
k=l 

Proof : From Theorem 4.1, it follows that the asymptotic power of a 

test of the form (4.1) is a maximum when the quantity A given in (4.11) is 

maximized. Observe that 

cov (r?, r?(7j?l)??7ijp) 
= 0 ... (4.14) 

and 

var (h(r?)) 
? cov2 (h(y), 7j)j var (r?) 

? var (h(7j)??ri) 
... (4.15) 

where ? is the usual linear regression coefficient 

? 
= cov (h(r?), 7/)/var (r?). ... (4.16) 

Therefore we can rewrite 

2p-2(\+p)2Aj J l2(u)du = cov (h(ri)-?ri, r){<r?- l)-4?///>)/[var (%)-^)]* o 
= cor (%)-/??/, 7i(t)-1)-4:7iIp) [var M?/-l)-4^//>)]* 

< [var (ti(V-l)-4?/p)]* = 2p~*(l+p) ... (4.17) 
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with equality in (4.17) if and only if 

for some real numbers a and b. Thus A is maximized by h(7?) 
= 

r?(ri?l) and 

maxi = 
J* Z2(w) du?(l+p). Q (4-18) 

? 0 

Using Theorem 4.1, we further have that under H0, 

off 
( [ 2^ ?*(?*-l)-2m//| im^pp-^l+p)])^^, 

1) ... (4.19) 

and that the asymptotic power for a test of level a is 

?[-k+( }nu)du)j(i+p)]. 
Further, from the above proof we see that the ARE in using Hh(Sk) 

instead of 2 Sk(Sk? 1) is 

e = 
cor2(h(7?)? ?y} t?(t?? 1)??7\\p). 

... (4.20) 

m m 

The statistic 2 SI which is equivalent to 2 Sk(Sk? 1) was proposed by 
*=1 k**l 

Dixon (1940). Blumenthal (1963) and Rao (1976) discuss the ARE of this 
test while Blum and Weiss (1957) consider the consistency properties. Blum 

and Weiss (1957) also show that the Dixon test is asymptotically LMP against 
"linear" alternatives with density {l+c(y?|)}, 0<y<l(|c|<2) but we have 

shown that Dixon test is indeed AMP against alternatives of the form (4.2). 

For a nonnegative integer r, if we define 

f 1 for x = r 

otherwise, 
then 

h(x)=< 
... (4.21) 

I 0 

m 
T*v 

= 2 h(Sk) 
fc=i 

is the statistic Qw(r), the proporiton of values among {Sk} which are equal to 

r. This statistic has been discussed in Blum and Weiss (1957) from the point 

A12-7 
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of consistency. Our results establish the asymptotic normality of Qm{r) under 

H0 as well as under the sequence of alternatives (4.2). After some computa 

tions we find from Corollary 4.1 that under the null hypothesis 

A nQm(r)-pl(I+p)r+1]) ~> N(0, or2) ... (4.22) 
where 

^2 = 
W(l+P)r+1}[l-(W(l+P)r+1){l+(^- -. (4-23) 

The Wald-Wolfowitz run test (1940) is related to Qm(0). Let U be the number 

of runs of X's and 7's in the combined sample. The hypothesis H0 is rejected 
when Ujm is too small. From the definition of Qm(r), it follows easily that 

\(Ujm)-2(njm)(l-Qm(0))\ < 1/m. ... (4.24) 

Thus the asymptotic distribution of Ujm is the same as that of 2p(l?Qm(0)) 
and we thus have, under H0, 

t?(mK(Ujm)-2j(l+p)]) -> N(0, 4p/(l+p)3). ... (4.25) 

Therefore the ARE of the run-statistic against the Dixon's statistic is pj(l+p) 
as shown in Rao (1976). 

5. Further remarks and discussion 

It is interesting to note that the theory developed in this paper gives 
tests based on {Sk} which are asymptotically equivalent to the corresponding 
rank tests in all the known examples discussed in Section 3. For a unified 

approach to the theory of rank tests see Chernoff and Savage (1958) or Hajek 
and Sidak (1967). We conjecture that in general, given any rank test, one 

can construct a test of the form (3.60) which has asymptotically the same 

null distribution and power. If this is the case, then the theory presented 
here seems to lead to much simpler test statistics which are linear in {Sk} as 

compared to the corresponding optimal rank tests based on score functions. 

Using the fact that tests linear in {Sk} 
are linear in the ranks {Rk}, 

one can derive 

the asymptotic distributions of statistics of the form (3.60) from rank theory. 
But neither the more general results of Theorem 3.1 nor the fact that tests 

such as (3.60) are asymptotically optimal, seems to follow from rank theory. 
Further relationships between these two groups of tests is under investigation. 
It may also be remarked that the theory presented here, especially Theorems 

4.1 and 4.2, covers many other tests that are not based on ranks as, for instance, 

the run test and the median test and seems to be more general to that extent. 
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The theorems presented here can also be applied to study similar test 

statistics when the samples are censored. For instance, suppose that the 

samples are censored at the right by X[{m_1)qj, the [(m?l)q]-th order statistic 

in the X-sample. Under the same assumptions as in Theorem 3.2, we obtain 

in the same way that optimal test statistic is given by 

[(m-i)ff] 

T= 2 l(k\(m+l))(Sk-l\p). ... (5.1) 
?=i 

Under H0, 

?(T\m?) -? N(0, f / l2(u)du- (f l(u)du))*}(p+l)/p2) 

and the asymptotic power is 

0(-Aa+ ( 
J 

l2(u)duj{ [/ 
l2(u)du- (/ l(u)du^\ (l+p)}V2)). 

... (5.2) 

For results on censoring in rank theory see, for instance, Rao, Savage and 

Sobel (1960) or Johnson and Mehrotra (1972). 
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